Geometric Description of Modular Lattices
نویسندگان
چکیده
Baer [1] observed that modular lattices of finite length (for example subgroup lattices of abelian groups) can be conceived as subspace lattices of a projective geometry structure on an ordered point set; the set of join irreducibles which in this case are the cyclic subgroups of prime power order. That modular lattices of finite length can be recaptured from the order on the points and, in addition, the incidence of points with ‘lines’, the joins of two points, or the blocks of collinear points has been elaborated by Kurinnoi [18] , Faigle and Herrmann [7], Benson and Conway [2] , and , in the general framework of the ‘core’ of a lattice, by Duquenne [5]. In [7] an axiomatization in terms of point-line incidence has been given. Here, we consider, more generally, modular lattices in which every element is the join of completely join irreducible ‘points’. We prove the isomorphy of an algebraic lattice of this kind and the associated subspace lattice and give a first order characterization of the associated ‘ordered spaces’ in terms of collinearity and order which appears more natural and powerful. The crucial axioms are a ‘triangle axiom’ which includes the degenerate cases and a strengthened ‘line regularity axiom’, both derived from [7]. As a consequence, using Skolemization, we get that any variety of modular lattices is generated by subspace latices of countable spaces. The central concept, connecting the geometric structure and the lattice structure, is that of a line interval (p + q)/(p + q) where p and q are points
منابع مشابه
A Geometric Description of Modular Lattices
Baer [1] observed that modular lattices of finite length (for example subgroup lattices of abelian groups) can be conceived as subspace lattices of a projective geometry structure on an ordered point set; the set of join irreducibles which in this case are the cyclic subgroups of prime power order. That modular lattices of finite length can be recaptured from the order on the points and, in add...
متن کاملLeft-Modular Elements of Lattices
Left-modularity is a concept that generalizes the notion of modularity in lattice theory. In this paper, we give a characterization of left-modular elements and derive two formulae for the characteristic polynomial, /, of a lattice with such an element, one of which generalizes Stanley's theorem [6] about the partial factorization of / in a geometric lattice. Both formulae provide us with induc...
متن کاملSemimodular Lattices and Semibuildings
In a ranked lattice, we consider two maximal chains, or “flags” to be i-adjacent if they are equal except possibly on rank i . Thus, a finite rank lattice is a chamber system. If the lattice is semimodular, as noted in [9], there is a “Jordan-Hölder permutation” between any two flags. This permutation has the properties of an Sn-distance function on the chamber system of flags. Using these noti...
متن کاملGeometric lattice structure of covering-based rough sets through matroids
Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Geometric lattice has widely used in diverse fields, especially search algorithm design which plays important role in covering reductions. In this paper, we construct four geometric lattice structures of covering-based rough sets through matroids, and compare their relatio...
متن کاملModular Elements of Geometric Lattices
Let L be a finite geometric lattice of rank n with rank function r. (For definitions, see e.g., [3, Chapter 2], [4], or [1, Chapter 4].) An element x s L is called a modular element if it forms a modular pair with every y e L , i.e., if a<~y then a V ( x A y ) = (a v x )Ay . Recall that in an upper semimodular lattice (and thus in a geometric lattice) the relation of being a modular pair is sym...
متن کامل